Voltage Transducer LV 200-AW/2/SP86

V_{PN} = 4200 V

For the electronic measurement of voltages : DC, AC, pulsed..., with a galvanic isolation between the primary circuit (high voltage) and the secondary circuit (electronic circuit).

Electrical data

V _{PN}	Primary nominal r.m.s. voltage		4200 V		-	Features
V _P R _M	Primary voltage, measurin Measuring resistance	g range	0 ± 5 R_{M min}	5000 R _{м max}	×	 Closed loop (compensated) voltage transducer using the Hall effect
	with ± 24 V	@ ± 4200 V _{max} @ ± 5000 V _{max}	0 0	240 70	$\Omega \ \Omega$	 Insulated plastic case recognized according to UL 94-V0
sn K _N	Secondary nominal r.m.s. current Conversion ratio		20 m A 4200 V/20 m A			Accessible electronic circuitShield between primary and
V _c I _c	Supply voltage (± 5 %) Current consumption		± 24 30 + I _s	3	V m A	 secondary circuit Primary resistor R₁ incorporated into
V _d	R.m.s. voltage for AC isola	tion test, 50 Hz, 1 mn	9 ¹⁾ 500 ²⁾		k V V	the housing.
V _e	R.m.s. voltage for partial discharge extinction @ 10 pC		≥ 3750	 ≥ 3750 ∨ Special features ≥ 0±5000 ∨ T. = -40°C + 85°C 		•
Α	ccuracy - Dynamic pe	rformance data				 X_G = 2.5 % (-40°C25°C; +70°C+85°C) Built-In primary resistance R₁ is
X _G e	Accuracy @ \mathbf{V}_{PN} , \mathbf{T}_{A} = - 40° Linearity	C+ 85°C	± 2.5 < 0.1		% %	connected in 2 equal parts to both sides of the primary winding
0	Offset current @ $\mathbf{I}_{p} = 0, \mathbf{T}_{A} =$			Max ±0.1	m A	 Shield around connections of secondary Connection to secondary circuit on
l _{ot}	Thermal drift of I _o Response time @ 90 % of	- 25°C + 70°C - 40°C + 85°C V		± 0.125 ± 0.2	m A m A µs	LEMO EGJ.1B.304.CYC • Railway equipment.
-		♥ PN	010		μ3	Advantages
G	Seneral data					Excellent accuracyVery good linearity
т	Ambiant anarating tompor		40	. 05	°C	, 3,

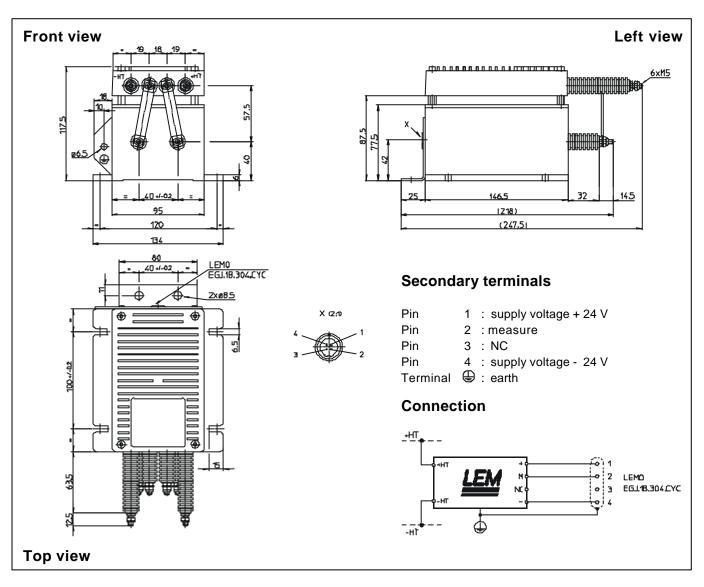
T _A	Ambient operating temperature	- 40 + 85	°C	
Ts	Ambient storage temperature	- 50 + 90	°C	
N	Turns ratio	105000 / 10000		
R ₁	Primary resistance @ $\mathbf{T}_{A} = 25^{\circ}\mathrm{C}$	2.2	MΩ	
Rs	Secondary coil resistance @ $T_A = 85^{\circ}C$	750	Ω	
P	Total primary power loss @ V _{PN}	8	W	
m	Mass	2.5	kg	
	Standards	EN 50155 (01.11.95)		

Notes : 1) Between primary and secondary + external shield

²⁾ Between secondary and external shield.

 Better behaviour with potential variations in common mode.

Applications


interference

· Low temperature drift · High immunity to external

- AC variable speed drives and servo motor drives
- Static converters for DC motor drives
- Uninterruptible Power Supplies (UPS)
- · Power supplies for welding applications.

030819/6

Dimensions LV 200-AW/2/SP86 (in mm. 1 mm = 0.0394 inch)

Mechanical characteristics

General tolerance	± 0.5 mm		
 Fastening of the transducer 	4 slots $arnothing$ 6.5 mm		
	4 steel screws M6		
Recommended fastening torque	4.5 Nm or 3.32 Lb Ft.		
 Connection of primary 	M5 threaded studs		
Recommended fastening torque	2.2 Nm or 1.62 Lb Ft.		
 Connection of secondary 	Lemo EGJ 1B.304.CYC		
 Connection to the ground 	hole $arnothing$ 6.5 mm		
	1 steel screw M6		
Recommended fastening torque	3.9 Nm or 2.88 Lb Ft.		
and/or	2 holes \varnothing 8.5 mm		
	2 steel screws M8		
Recommended fastening torque	9 Nm or 6.64 Lb Ft.		

Remarks

- I_s is positive when V_P is applied on terminal +HT.
- The primary circuit of the transducer must be connected to the voltage which has to be measured.

LEM reserves the right to carry out modifications on its transducers, in order to improve them, without previous notice.